再
 PYRAMID
 IIT-JEE|MEDICAL|FOUNDATION NEET TEST PAPER

Time : 3 Hrs.
Max. Marks : 720

Important Instructions :

1. The test is of 3 hours duration and Test Booklet contains 200 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720 .
2. Use Black Ball point Pen only for writing particulars on this page/marking responses.
3. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
4. On completion of the test, the candidate must handover the Answer Sheet to the Invigilator before leaving the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
5. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
6. Each candidate must show on demand his/her Admission Card to the Invigilator.
7. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
8. Use of Electronic/Manual Calculator is prohibited.
9. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
10. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.

Name of Student : \qquad
"We are what we repeatedly do. Excellence, therefore, is not an act but a habit .,

PART - I [BOTANY]

SECTION - A

1. In pea plants, yellow seeds are dominant to green. If a heterozygous yellow seeded plant is crossed with a green seeded plant, what ratio of yellow and green seeded plants would you expect in F_{1} generation :
(A) $50: 50$
(B) $9: 1$
(C) $1: 3$
(D) $3: 1$
2. Identify the wrong statement with reference to the gene ' I ' that controls ABO blood groups.
(A) A person will have only two of the three alleles.
(B) When IA and IB are present together, they express same type of sugar.
(C) Allele ' i ' does not produce any sugar.
(D) The gene (I) has three alleles.
3. Which of the following pairs is wrongly matched?
(A) Starch synthesis in pea:Multiple alleles
(B) ABO blood grouping : Co-dominance
(C) XO type sex determination:

Grasshopper
(D) T.H. Morgan : Linkage
4. Lack of independent assortment of two genes A and B in fruit fly Drosophila is due to :-
(A) Recombination
(B) Linkage
(C) Crossing over
(D) Repulsion
5. If a colour-blind man marries a woman who is homozygous for normal colour vision, the probability of their son being colour-blind is :
(A) 0.5
(B) 0.75
(C) 1
(D) 0
6. During DNA replication, Okazaki fragments are used to elongate :
(A) The leading strand towards replication fork.
(B) The lagging strand towards replication fork.
(C) The leading strand away from replication fork.
(D) The lagging strand away from the replication fork.
7. Which of the following features of genetic code does allow becteria to produce human insulin by recombinant DNA technology?
(A) Genetic code is nearly universal
(B) Genetic code is specific
(C) Genetic code is not ambiguous
(D) Genetic code is redundant
8. The first phase of translation is :
(A) Recognition of DNA molecule
(B) Aminoacylation of tRNA
(C) Recognition of an anti-codon
(D) Binding of mRNA to ribosome
9. Expressed Sequence Tags (ESTs) refers to:
(A) DNA polymorphism
(B) Novel DNA sequences
(C) Genes expressed as RNA
(D) Polypeptide expression
10. Match the following genes of the Lac operon with their respective products :
(a) i gene
(i) β-galactosidase
(b) z gene
(ii) Permease
(c) a gene
(iii) Repressor
(d) y gene
(iv) Transacetylase

Select the correct option:

	(a)	(b)	(c)	(d)
(A)	(iii)	(i)	(iv)	(ii)
(B)	(iii)	(iv)	(i)	(ii)
(C)	(i)	(iii)	(ii)	(iv)
(D)	(iii)	(i)	(ii)	(iv)

11. Find odd one w.r.t. plants having green succulent stem
(A) Opuntia
(B) Euphorbia
(C) Citrus
(D) Both (A) \& (B)
12. The site of origin of the new plantlets in potato, sugarcane and banana are
(A) Nodes
(B) Internodes
(C) Both nodes and internodes
(D) Leaf margins
13. Which of the following is incorrect w.r.t. the family, the floral diagram, of which is provided below?

(A) The floral formula is : $\mathrm{Br} \oplus \underset{+}{\boldsymbol{C}}$ $\mathrm{K}_{3} \mathrm{C}_{3} \mathrm{~A}_{3+3} \mathrm{G}_{(3)}$
(B) The plants usually possess exalbuminous seeds
(C) Fruit is usually capsule
(D) More than one option
14. Read the following statements and select the correct ones.
(i) PS-I is involved in non-cyclic photophosphorylation only.
(ii) PS-II is involved in both cyclic and non -cyclic photophosphorylation.
(iii) Stroma lamellae membranes possess PS-I only, whereas grana lamellae membranes possess both PS-I and PS-II.
(A) (i) only
(B) (ii) only
(C) (iii) only
(D) (i), (ii) and (iii)
15. Which of the following is not an external factor influencing photosythesis?
(A) CO_{2} concentration
(B) O_{2} concentration
(C) Availability of water
(D) Chlorophyll concentration
16. Select the wrong statement with respect to glycolysis.
(A) It occurs outside mitochondria.
(B) It is an anaerobic phase.
(C) Glucose undergoes partial oxidation to form 2 molecules of pyruvic acid.
(D) Glucose is phosphorylated to glucose-6-phosphate by isomerase enzyme.

IIT-JEE | MEDICAL | FOUNDATION
17. Select the wrong statement.
(A) Oxidative decarboxylation of pyruvic acid requires the presence of enzyme pyruvate dehydrogenase.
(B) All living cells whether aerobic or anaerobic, perform glycolysis.
(C) Cyanide does not stop chemiosmosls.
(D) Respiratory chain uses O_{2} as final hydrogen acceptor.
18. Which one is paired incorrectly?

(A)	Auxin	Isolated from human urine
(B)	Zeatin	Isolated from corn kernels and coconut milk
(C)	Gibberellins	Isolated from fungus G. fujikori
(D)	Abscisic acid	Isolated from ripened Oranges

19. Premature leaf fall is due to deficiency of
(A) sodium
(B) potassium
(C) zinc
(D) phosphorus
20. Which is the correct order of ecological hierarchy ?
(A) Biome \rightarrow Populations \rightarrow Community \rightarrow Organism
(B) Organism \rightarrow Biome \rightarrow Population \rightarrow Community
(C) Population \rightarrow Community \rightarrow Biome \rightarrow Organism
(D) Organism \rightarrow Population \rightarrow Community \rightarrow Biome
21. In a population per capita birth rate is 0.15 and per capita death rate is 0.08 during a unit time period. What is the value of r (intrinsic rate of natural increase) for the given population?
(A) 0.23
(B) 0.07
(C) 0.05
(D) 0.25
22. In the following pie chart of global vertebrates diversity, what does A, B and C represent respectively?

(A) Birds, Fishes, Amphibians
(B) Mammals, Reptiles, Birds
(C) Fishes, Birds, Amphibians
(D) Amphibians, Fishes, Reptiles
23. Below is the digramatic representation of response of organisms against temperature. Find out the correct match.

(A) A-Plants, B-birds
(B) A-Birds, B-mammals
(C) C-Mammals, B-plants
(D) A-Birds, B-Plants
24. The suffix-phyta indicates
(A) Family
(B) Order
(C) Class
(D) Division
25. Chromatophores take part in
(A) Photosynthesis
(B) Growth
(C) Movement
(D) Respiration
26. The structures that help some bacteria to attach to rocks and or host tissues are
(A) Rhizoids
(B) Fimbriae
(C) Mesosomes
(D) Holdfast
27. Cell wall is absent in
(A) Aspergillus
(B) Funaria
(C) Mycoplasma
(D) Nostoc
28. Cyrysophytes, euglenoids, dinoflagellates and slime moulds are included in the kingdom
(A) Protista
(B) Fungi
(C) Animalia
(D) Monera
29. Sexual reproduction by non-flagellated but similar in size gametes is seen in :
(A) Chlamydomonas
(B) Volvox
(C) Spirogyra
(D) Fucus
30. Heterosporous ferns include both :
(A) Lycopodium and Equisetum
(B) Selaginella and Salvinia
(C) Psilotum and phylloglossum
(D) Selaginella and Equisetum
31. The endosperm of a gymnosperm develops \qquad fertilization, whereas the endosperm of an angiosperm develops \qquad fertilization.
(A) Before, before
(B) After, after
(C) After, before
(D) Before, after
32. The pyrenoids made up of
(A) Proteinaceous centre and starchy sheath
(B) Core of protein surrounded by fatty sheath
(C) Core of starch surrounded by sheath of protein
(D) Core of nucleic acid surrounded by protein sheath
33. Choose the odd one w.r.t. the ploidy in a typical angiosperm.
(A) Generative cell
(B) Nucellus
(C) Tube nucleus
(D) Pollen
34. Seeds of which of the given plants germinated after 10,000 years of dormancy ?
(A) Date palm
(B) Lupinus arcticus
(C) Oxalis
(D) Tomato
35. Which of the following posses sexual structure in angio sperms ?
(A) leaf
(B) root
(C) flower
(D) stern

Section B

36. Select the correct match.

(A)	Phenylketonuria	-	Autosomal dominant trait
(B)	Sickel cell anaemia	-	Autosomal recessive trait, chromosome-11
(C)	Thalassemia	-	X linked
(D)	Haemophilia	-	Y linked

37. The net electrical charge on DNA and histones is :
(A) Both positive
(B) Both Negative
(C) Negative and positive respectively
(D) Zero
38. How many components listed below are part of cyclic ETS?
P_{700}, P_{680}, NADP reductase, Hydrogen carrier,PS I, Water Splitting Complex, PS II
(A) Two
(B) Three
(C) Five
(D) Four
39. Refer the given figure, What does it represent?

(A) Simple diffusion
(B) Facilitated diffusion
(C) Osmosis
(D) Active transport
40. The hydrostatic pressure developed inside the cell on the cell wall due to endosmosis is called
(A) osmotic potential
(B) diffusion pressure
(C) wall pressure
(D) turgor pressure.
41. Read the following statements and select the incorrect ones.
(i) The co-ordinated activities of the legume and Rhizobium bacteria depend on chemical interactions between the symbiotic partners.
(ii) Leguminous roots secrete chemical attractants that attract Rhizobium bacteria living nearby.
(iii) N, P and K usually do not get deficient in soil due to their low plant requirement
(iv) Nitrogen cycle is regular circulation of nitrogen amongst living organisms with its reservoir pool in lithosphere and cycling pool in atmosphere.
(A) (i) and (ii)
(B) (ii) and (iii)
(C) (iii) and (iv)
(D) (ii), (iii) and (iv)
42. The biomass available for consumption by the herbivores and the decomposers is called
(A) net primary productivity
(B) secondary productivity
(C) standing crop
(D) gross primary productivity.

IIT-JEE | MEDICAL | FOUNDATION
43. The sequence of communities of primary succession in water is
(A) phytoplankton, sedges, free-floating hydrophytes, rooted hydrophytes, grasses and trees.
(B) phytoplankton, rooted hydrophytes, free-floating hydrophytes, , reed swamp, grasses and trees.
(C) free-floating hydrophytes, sedges, phytoplankton, rooted hydrophytes, grasses and trees.
(D) phytoplankton, rooted submerged hydrophytes, floating hydrophytes, reed swamp, grasses, meadow and trees.
44. Amongst the animal groups given below, which one has the highest percentage of endangered species?
(A) Insects
(B) Mammals
(C) Amphibians
(D) Reptiles
45. The historic convention on Biological Diversity held in Rio de Janeiro in 1992 is known as
(A) CITES Convention
(B) The Earth Summit
(C) G-16 Summit
(D) MAB Programme.
46. Find Incorrect statement w.r.t. catalytic converter
(A) Platinum-palladium and rhodium as catalysts
(B) Lead in petrol activates the catalysts
(C) Reduced the emission of poisonous gases
(D) CO and No_{x} changed to CO_{2} and N_{2} gas
47. Which among the following is not prokaryote?
(A) Saccharomyces
(B) Mycobacterium
(C) Nostoc
(D) Oscillatoria
48. Age of a tree can be estimated by ?
(A) Its height and girth
(B) Biomass
(C) Number of annual rings
(D) Diameter of its heartwood
49. Lignin is a component of the secondary walls of :-
(A) Epidermis
(B) Collenchyma
(C) Sclerenchyma
(D) Parenchyma
50. The most impotant function of the trichomes is:
(A) They prevent water loss due to transpiration
(B) They prevent herbivory
(C) They are sensory structures that decipher the wind velocity and direction
(D) They play an important part in pollination of plants

IIT-JEE | MEDICAL |FOUNDATION

PART - II [ZOOLOGY]

SECTION - A

51. A change in ovum after penetration of sperm is:-
(A) Formation of first polar body
(B) Second meiosis division starts
(C) First meiosis division starts
(D) Formation of second polar body
52. Statement True (T) or False (F):-
(i) During pregnancy all events of the menstrual cycle are not completely stop.
(ii) menstruation only occurs if the released ovum is not fertilized.
(iii) Lack of pregnancy is clear indication of pregnancy.
(iv) The cycle ends with the menstrual bleeding.

	(i)	(ii)	(iii)	(iv)
(A)	F	T	F	T
(B)	T	F	T	F
(C)	F	T	F	F
(D)	T	T	F	T

53. At the time of implantation, the human embryo is called :
(A) Gastrulla
(B) Blastocyst
(C) Zygote
(D) Morulla
54. Select the correct match of the techniques given in column I with its feature given in column II.

	Column I	Column II	
a.	ICSI	I.	Artificially introduction of semen into the vegina or uterus.
b.	IUI	II.	Transfer of ovm collected from a donor into the fallopian tube where fertilization occur
c.	IUT	III.	Formation of embryo by directly injecting sperm into the ovum
d.	GIFT	IV.	Transfer of the zygote or early embryo (with upto 8 blastomeres) into a fallopian tube.
e.	ZIFT	V.	Transfer of embryo with more than 8 blastomeres into the uterus

Options :-

(A) a - V; b - IV; c - I; d - III; e - II
(B) a - I; b-II; c - III; d - IV; e - V
(C) a - III; b - V; c - II; d - IV; e - I
(D) a - III; b - I; c - V; d - II; e - IV
55. Consider the following four statements (a-d) and select the option which includes all the correct ones only : -
(a) B-lymphocytes mediate Cellmediated immunity
(b) Cell mediated immune response is responsible for graft rejection
(c) Subsequent encounter with the same pathogen elicits a highly intensified anamnestic response
(d) Interferons protect non-infected cells from further Bacterial infection

Options :-

(A) Statements b, c, d
(B) Statements b, c
(C) Statements c, d
(D) Statements b, c, d
56. Leucocytes are responsible for humoral immune response?
(A) T-lymphocytes
(B) B-lymphocytes
(C) Macrophages
(D) Neutrophils
57. At which stage of HIV infection does one usually show symptoms of AIDS :
(A) Within 15 days of sexual contact with an infected person.
(B) When the infected retro virus enters host cells.
(C) When HIV damages large number of helper T-Lymphocytes,
(D) When the viral DNA is produced by reverse transcriptase,
58. When the body is exposed to an antigen for the first time, a low intensity primary response is elicited. During this response, the antibodies mainly formed are of the class :-
(A) IgA
(B) IgE
(C) IgM
(D) IgG
59. Counter-current mechanism helps to maintain a concentration gradient.
This gradient help in :
(A) easy passage of water from medulla to collecting tubule and thereby concentrating urine.
(B) easy passage of water from collecting tubule to interstitial fluid and thereby concentrating urine.
(C) easy passage of water from medullary interstitial fluid to collecting tubule and there by diluting urine.
(D) easy passage of water from collecting tubule to interstitial fluid and there by diluting urine.
60. If a person drinks excess amount of water which decreases osmolarity of blood, then which one of the following would be released into the blood ?
(A) Antidiuretic hormone
(B) Renin
(C) Atrial natriuretic factor
(D) Aldosterone
61. The H-zone in the skeletal muscle fibre is due to
(A) Extension of myosin filaments in the central portion of the A-band
(B) The absence of myofibrils in the central portion of A-band
(C) The central gap between myosin filaments in the A-band
(D) The central gap between actin filaments extending through myosin filaments in the A-band
62. Arrange the following in the order of increasing volume ?
(A) Tidal volume
(B) Residual volume
(C) Inspiratory reserve volume
(D) Vital capacity
(A) A $<$ B $<$ C $<$ D
(B) A $<$ C $<$ B $<$ D
(C) A $<$ D $<$ C $<$ B
(D) A $<$ D $<$ B $<$ C
63. Which of the following is correct?

	Alveoli	Dexogy genated blood	Tissue
(A)	$\mathrm{PO}_{2}=159 \mathrm{~mm}$ Hg	$\mathrm{PCO}_{2}=40 \mathrm{~mm}$ Hg	$\mathrm{PCO}_{2}=20 \mathrm{~mm}$ Hg
(B)	$\mathrm{PCO}_{2}=40 \mathrm{~mm}$ Hg	$\mathrm{PO}_{2}=95 \mathrm{~mm} \mathrm{Hg}$	$\mathrm{PO}_{2}=40 \mathrm{~mm}$ Hg
(C)	$\mathrm{PO}_{2}=104 \mathrm{~mm}$ Hg	$\mathrm{PCO}_{2}=45 \mathrm{~mm}$ Hg	$\mathrm{PCO}_{2}=45 \mathrm{~mm}$ Hg
(D)	$\mathrm{PO}_{2}=40 \mathrm{~mm}$ Hg	$\mathrm{PO}_{2}=40 \mathrm{~mm} \mathrm{Hg}$	$\mathrm{PCO}_{2}=45 \mathrm{~mm}$ Hg

64. Which one is not a platyhelminthes ?
(A) Tapeworm
(B) Liver fluke
(C) Planaria
(D) Hookworm
65. Consider the following characteristic of fishes :-
(a) They have four pairs of gills which are covered by an operculum.
(b) They have air bladder which regulates buoyancy
(c) They are mostly viviparous and development is direct
(d) Their body is streamlined and covered with cycloid/ ctenoid scales Which of the above characteristics regarding bony fishes are correct ?
(A) a, b and c
(B) c and d
(C) a, b and d
(D) b alone
66. Match the column :-

(a)	Dentalium	(i)	Brittle star
(b)	Ophiura	(ii)	Cuttle fish
(C)	Antedon	(iii)	Sea Urchin
(d)	Echinus	(iv)	Tusk shell
(e)	Sepia	(v)	Sea lily

(A) a-(iv). b-(i), c-(iv). d-(ii), e-(iii)
(B) a-(iv), b-(i), c-(v), d-(iii). e-(ii)
(C) a-(i), b-(iv), c-(v), d-(iii). e-(ii)
(D) a-(iv), b-(i), c-(iii), d-(v). e-(ii)
67. Which of the following animal is radially symmetrical but has a bilaterally symmetrical larva:
(A) Ascaris (Round worm)
(B) Nereis (Ring worm)
(C) Pila (Apple snail)
(D) Asterias (Star fish)
68. Which of the following pairs of animals comprise 'Comb jellies' ?
(A) Balanoglossus and Saccoglossus
(B) Pleurobranchia and Ctenoplana
(C) Sea anemone and sea pen
(D) Sea lily and brittle star
69. Pick out the incorrect statement ?
(A) Myelinated nerve fibres are found in spinal and cranial nerve.
(B) Unmyelinated nerve fibre is enclosed by a schwann cell.
(C) In resting stage the axonal membrane is comparatively more permeable to potassium ion and nearly impermeable to sodium ions.
(D)Axolemma is more permeable to negatively charged protein present in the axoplasm.
70. Study the diagram of synapse :

I. Which alphabet indicate the location of the receptor molecules ?
II. Which alphabet points to a synaptic vesicles
III. Which alphabet points to neurotransmitter
IV. Which alphabet points to synaptic celft

	I	II	III	IV
(A)	C	A	B	D
(B)	B	A	C	D
(C)	C	A	D	B
(D)	C	D	A	B

71. Pineal gland is not related with :
(A) Body temperature
(B) Defence capability
(C) Metabolism
(D) Kidney functions
72. How many statements are correct regarding parathyroid gland ?
(a) Four parathyroid gland present on ventral side of thyroid gland
(b) It secretes parathromone which is steroidal in nature
(c) It increase blood Ca++ level
(d) It act on bone and stimulate bone resorbtion
(A) One
(B) Two
(C) Three
(D) Four
73. Heart failure means:
(A) When the heart stops beating.
(B) When the heart muscle is suddenly damaged.
(C) The state of heart when it is not pumping blood effectively enough to meet the needs of the body.
(D) Deposition of cholesterol in the lumen of coronary artery.
74. Find out the correct statements :-
(a) During a cardiac cycle, each ventricle pumps out approximately 70 mL of blood which is called the stroke volume:
(b) The cardiac output of an athlete will be much higher than that of an ordinary man
(c) The body has no the ability to alter the stroke volume and the cardiac output
(d) The cardiac output can be defined as the volume of blood pumped out by each ventricle per minute.
(e) Volume of blood pumped by left ventricle is higher than blood pumped by right ventricle

Options:-

(A) (a),(b),(c) \& (d)
(B) $(\mathrm{a}),(\mathrm{b}) \&(\mathrm{~d})$
(C) (b), (c) \& (e)
(D) (a), (b),(d) \& (e)
75. Eukaryotes have which type of ribosome..?
(A) 70 s
(B) 80 s
(C) Both a and b
(D) 55 s
76. A major site for synthesis of lipid is -
(A) RER
(B) SER
(C) Symplast
(D) Nucleoplast
77. Match the following columns.

	Column-I		Column-II
a	Golgi apparatus	1.	Conversion of lipids to carbohydrates
b	Glyoxysomes	2.	Catabolism of long chain fatty acid
c	Peroxisomes	3.Formation of glycoproteins and glycolipids	
d	Endoplasmic reticulum	4.	Synthesis of lipids
		5.	osmoregulation

Codes:

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
(A)	4	5	1	2
(B)	5	4	2	3
(C)	3	1	2	4
(D)	2	3	5	1

78. Which of the following is the least likely to be involved in stabilizing the threedimensional (3D) folding of most proteins ?
(A) Hydrogen bonds
(B) Electrostatic interaction
(C)Hydrophobic interaction (Vanderwal)
(D) Ester bonds
79. The complete disintegration of nuclear envelope in a cell cycle marks the
(A) start of prophase of mitosis
(B) start of metaphase of mitosis
(C) end of anaphase of mitosis
(D) start of telophase of mitosis
80. Crossing over is an exchange of genetic material between
(A) Homologous chromosome
(B) Heterologous chromosome
(C) Non-homologous chromosome
(D) All of these
81. Biological method of control of pests and disease relies on :
(A) Interspecific competition
(B) Intraspecific competition
(C) Natural predation
(D) Introduced chemicals
82. In a mixture, DNA fragments are separated by
(A) Polymerase chain reaction
(B) Bioprocess engineering
(C) Restriction digestion
(D) Electrophoresis
83. In Recombinant DNA technology, antibiotices are used
(A) As selectable markers
(B) To keep medium bacteria-free
(C) To detect alien DNA
(D) To impart disease-resistant to the host plant
84. First discovered restriction endonucleases that always cut DNA molecule at a particular point by recognising a specific sequence of six base pairs is
(A) Hind II
(B) EcoR I
(C) Adenosine deaminase
(D) Thermostable DNA polymerase
85. Bt cotton variety that was developed by the introduction of toxin gene Bacillus thuringiensis (Bt) is resistant to :
(A) Fungal diseases
(B) Plant nematodes
(C) Insect predators
(D) Insect pests
86. Parents of a four year old child are advised by doctor to give him more meat, lentils, milk and eggs in diet as he is suffering probably from
(A) Kwashiorkor
(B) Marasmus
(C) Anaemia
(D) Rickets
87. Gastric secretion is stopped by hormone
(A) enterogastrone
(B) gastrin
(C) pancreozymin
(D) cholecystokinin
88. Which of the following are the placental hormone-
(a) hCG
(b) hPL
(c) Estrogen
(d) Relaxin
(e) Progesterone (f) FSH
(g) LH
(A) a,b, c, d, e,f,g
(B) a, b, c, e
(C) a, b, c, e, f
(D) a, b, c, d, e
89. Leghorn is an improved breed of :
(A) Chicken
(B) Cattle
(C) Fish
(D) Honey bee
90. The extinct human ancestor, who ate only fruits and hunted with stone weapons was-
(A) Ramapithecus
(B) Australopithecus
(C) Dryopithecus
(D) Homo erectus
91. In a population with two alleles for a gene locus (A and a), the allele frequency of A is 0.7 . What would be the frequency of heterozygotes if the population is in Hardy-Weinberg equilibrium-
(A) 0.49
(B) 0.42
(C) 0.21
(D) 0.09
92. Earth originated before :-
(A) 5.6 billion years
(B) 4.0 billion years
(C) 4600 million years
(D) None
93. Read the following (a-d) statements :-
a. Connective tissue are most abundant and widely distributed in the body of complex animals
b. They are named connective tissues because of their special function of linking and supporting other tissues/organs of the body
c. They range from soft connective tissues to specialised types, which include cartilage, bone, adipose and blood
d. The cells of connective tissue secrete modified polysaccharides, which accumulate between cells and fibres and act as matrix

How many of the following statements are correct ?
(A) Four
(B) Three
(C) Two
(D) One
94. Which of the following is incorrect statement for the simple columnar epithelium ?
(A) It is composed of a single layer of tall and slender cells
(B) Their nuclei are located at the base
(C) Free surface may have microvilli
(D) They are found in the walls of blood vessels and air sac of lungs
95. Which of the following fishes is also known as "Great white shark" ?
(A) Pristis
(B) Trygon
(C) Clarias
(D) Carcharodon
96. Find out the incorrect statements :
(A) Hormone always produces their effect by binding with specific proteins located on cell membrane or inside the cell.
(B) Receptors are specific for a particular hormone molecule.
(C)Hormones act with membrane bound receptors and then enters into cell to bind with secondary messenger.
(D) Protein hormone produce secondary messengers inside the target cell.
97. Choose the incorrect pair.
(A) Histones - Basic proteins
(B)Centromere- Primary constriction
(C) Kinetochore-Disc-shaped structure
(D) None of the above
98. Transverse binary fission occurs in :
(A) Euglena
(B) Amoeba
(C) Hydra
(D) Paramecium
99. Match the following columns and select the correct options.

Column-I		Column-II	
(a)	Bt cotton	(i)	Gene therapy
(b)	Adenosine deaminase deficiency	(ii)	Cellular defence
(c)	RNAi	(iii)	Detection of HIV infection
(d)	PCR	(iv)	Bacillus thuringiensis

(a) (b) (c) (d)
(A) (iii)
(ii) (i)
(iv)
(B) (ii)
(iii (iv)
(i)
(C) (i)
(ii)
(iii) (iv)
(D) (iv)
(i)
(ii) (iii)
100. Progeny of a cross made between two pure parents show increased vigour and productivity. This is due to :
(A) Selection vigour
(B) Hybridisation
(C) Hybrid vigour
(D) Mutation

IIT-JEE | MEDICAL |FOUNDATION

PART - III [PHYSICS]

SECTION-A

101. The velocity v of a moving particle varies with displacement as $x=\sqrt{v+1}$, the acceleration of the particle at $\mathrm{x}=5$ unit will be-
(A) $\sqrt{6}$ unit
(B) 24 unit
(C) 240 unit
(D) 25 unit
102. A bus appears to go with a speed of $25 \mathrm{~km} / \mathrm{hr}$ to a car driver, driving at the rate $7 \mathrm{~km} / \mathrm{hr}$ northwards. If the bus actually travels in east direction, its speed is -
(A) $24 \mathrm{~km} / \mathrm{h}$
(B) $23 \mathrm{~km} / \mathrm{h}$
(C) $26 \mathrm{~km} / \mathrm{h}$
(D) $30 \mathrm{~km} / \mathrm{h}$
103. A hunter aims his gun and fires a bullet directly at a monkey on a tree. At the instant bullet leaves the gun, monkey drops, the bullet:
(A) hits the monkey
(B) mises to hit the monkey
(C) cannot be said
(D) None of these
104. The velocity of end ' A ' of rigid rod placed between two smooth vertical walls moves with velocity ' u ' along vertical direction. Find out the velocity of end ' B ' of that rod, rod always remains in constant with the vertical walls.

(A) u $\tan 2 \theta$
(B) $u \cot \theta$
(C) $u \tan \theta$
(D) $2 u \tan \theta$
105. For the arrangement shown in the figure the tension in the string is
[Given: $\tan ^{-1}(0.8)=39^{\circ}$].

(A) 6 N
(B) 6.4 N
(C) 0.4 N
(D) zero
106. Work done by force of friction:
(A) can be positive
(B)can be negative
(C) can be zero
(D) any of these
107. A toy car of mass 5 kg moves up a ramp under the influence of force F plotted against displacement x. The maximum height attained is given by

(A) $y_{\text {max }}=20 \mathrm{~m}$
(B) $y_{\text {max }}=15 \mathrm{~m}$
(C) $y_{\text {max }}=11 \mathrm{~m}$
(D) $y_{\text {max }}=5 \mathrm{~m}$
108. An open pipe is suddenly closed at one end with the result that the frequency of third harmonic of the closed pipe is found to be higher by 100 Hz than the fundamental frequency of the open pipe. The fundamental frequency of the open pipe is
(A) 200 Hz
(B) 300 Hz
(C) 240 Hz
(D) 480 Hz

IIT-JEE | MEDICAL |FOUNDATION
109. Two waves of same frequency and of intensity I_{0} and $9 \mathrm{I}_{0}$ produces interference. If at a certain point the resultant intensity is $7 \mathrm{I}_{0}$ then the minimum phase difference between the two sound waves will be-
(A) 90°
(B) 100°
(C) 120°
(D) 110°
110. In the figure given the position-time graph of a particle of mass 0.1 kg is shown. The impulse at $t=2 \mathrm{~s}$ is :

(A) $0.2 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
(B) $-0.2 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
(C) $0.1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
(D) $-0.4 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
111. Three objects, A : (a solid sphere), B : (a thin circular disk) and C: (a circular ring), each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation.
(A) $W_{B}>W_{A}>W_{C}$
(B) $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{C}}$
(C) $\mathrm{W}_{\mathrm{C}}>\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}$
(D) $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{C}}>\mathrm{W}_{\mathrm{B}}$
112. From a disc of a radius R and mass M, a circular hole of diameter R, whose rim passes through the centre is cut. What is the moment of inertia of the remaining part of the disc about a perpendicular axis, passing through the centre?
(A) $15 \mathrm{MR}^{2} / 32$
(B) $13 \mathrm{MR}^{2} / 32$
(C) $11 \mathrm{MR}^{2} / 32$
(D) $9 \mathrm{MR}^{2} / 32$
113. Dependence of intensity of gravitational field (E) of earth with distance (r) from centre of earth is correctly represented by :-
(A)

(B)

(C)

(D)

114. A planet moving along an elliptical orbit is closest to the sun at a distance r_{1} and farthest away at a distance of r_{2}. If v_{1} and v_{2} are the linear velocities at these points respectively, then the ration v_{1} / v_{2} is :-
(A) $\left(r_{1} / r_{2}\right)^{2}$
(B) $\left(r_{2} / r_{1}\right)$
(C) $\left(r_{2} / r_{1}\right)^{2}$
(D) $\left(r_{1} / r_{2}\right)$
115. A wire elongates by $\ell \mathrm{mm}$ when a load W is hanged from it. If the wire goes over a pulley and two weights W each are hung at the two ends, the elongation of the wire will be (in mm)
(A) ℓ
(B) 2ℓ
(C) zero
(D) $\ell / 2$
116. If $M_{1} g m$ of a substance with specific gravity S_{1} is mixed with M_{2} gm of a substance with specific gravity S_{2} and then the substances are used to make an alloy. What will be the specific gravity of the alloy ?
(A) $\left(M_{1}+M_{2}\right) / S_{1} S_{2}$
(B) $\left(M_{1}+M_{2}\right) /\left(M_{1} / S_{1}+M_{2} / S_{2}\right)$
(C) $\left(M_{1} / S_{1}\right)+\left(M_{1} / S_{2}\right) /\left(M_{1}+M_{2}\right)$
(D) $\left(M_{1} / S_{1}\right)+\left(M_{2} / S_{2}\right) /\left(M_{1} M_{2}\right)$

IIT-JEE | MEDICAL |FOUNDATION
117. A man of weight 40 kg floats on water in a lake. His apparent weight is
(A) 40 kg
(B) 35 kg
(C) zero
(D) 20 kg
118. A metallic bar is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. The coefficient of linear expansion is $10^{-5} \mathrm{~K}^{-1}$. What will be the percentage increase in length-
(A) 0.01%
(B) 0.1%
(C) 1%
(D) 10%
119. A proton (mass $=1.67 \times 10^{-27} \mathrm{~kg}$ and charge $\quad=1.6 \times 10^{-19} \mathrm{C}$) enters perpendicular to a magnetic field of intensity 2 weber $/ \mathrm{m}^{2}$ with a velocity $3.4 \times 10^{7} \mathrm{~m} / \mathrm{sec}$. The acceleration of the proton should be
(A) $6.5 \times 10^{15} \mathrm{~m} / \mathrm{sec}^{2}$
(B) $6.5 \times 10^{13} \mathrm{~m} / \mathrm{sec}^{2}$
(C) $6.5 \times 10^{11} \mathrm{~m} / \mathrm{sec}^{2}$
(D) $6.5 \times 10^{9} \mathrm{~m} / \mathrm{sec}^{2}$
120. A proton and an α-particle enter a uniform magnetic field perpendicularly with the same speed. If proton takes 25 μ sec to make 5 revolutions, then the periodic time for the α-particle would be
(A) $50 \mu \mathrm{sec}$
(B) $25 \mu \mathrm{sec}$
(C) $10 \mu \mathrm{sec}$
(D) $5 \mu \mathrm{sec}$
121. The time period of oscillation of a bar magnet suspended horizontally along the magnetic meridian is T_{0}. If this magnet is replaced by another magnet of the same size and pole strength but with double the mass, the new time period will be
(A) $\frac{T_{0}}{2}$
(B) $\frac{\mathrm{T}_{0}}{\sqrt{2}}$
(C) $\sqrt{2} \mathrm{~T}_{0}$
(D) $2 \mathrm{~T}_{0}$
122. Temperature above which a ferromagnetic substance becomes paramagnetic is called
(A) Critical temperature
(B) Boyle's temperature
(C) Debye's temperature
(D) Curie temperature
123. The only property possessed by ferromagnetic substance is
(A) Hysteresis
(B) Susceptibility
(C) Directional property
(D) Attracting magnetic substances
124. A solenoid has 2000 turns wound over a length of 0.30 metre. The area of its cross-section is $1.2 \times 10^{-3} \mathrm{~m}^{2}$. Around its central section, a coil of 300 turns is wound. If an initial current of 2 A in the solenoid is reversed in 0.25 sec , then the e.m.f. induced in the coil is
(A) $6 \times 10^{-4} \mathrm{~V}$
(B) $4.8 \times 10^{-3} \mathrm{~V}$
(C) $6 \times 10^{-2} \mathrm{~V}$
(D) 48 mV
125. In a transformer, the coefficient of mutual inductance between the primary and the secondary coil is 0.2 henry. When the current changes by 5 ampere/second in the primary, the induced e.m.f. in the secondary will be
(A) 5 V
(B) 1 V
(C) 25 V
(D) 10 V
126. In an LR-circuit, the inductive reactance is equal to the resistance R of the circuit. An e.m.f. $E=E_{0} \cos (\omega t)$ applied to the circuit. The power consumed in the circuit is
(A) $\frac{E_{0}^{2}}{R}$
(B) $\frac{E_{0}^{2}}{2 R}$
(C) $\frac{E_{0}^{2}}{4 R}$
(D) $\frac{E_{0}^{2}}{8 R}$
127. A constant voltage at different frequencies is applied across a capacitance C as shown in the figure. Which of the following graphs
Signal Generator

Correctly depicts the variation of current with frequency ?
(A)

(B)

(C)

(D)

128. If an electron and a photon propagate in the form of waves having the same wavelength, it implies that they have the same
(A) Energy
(B) Momentum
(C) Velocity
(D) Angular momentum
129. A parallel plate capacitor with air between the plates has a capacitance of 9 pF . The separation between its plates is d . The space between the plates is now filled with two dielectrics. One of the dielectrics has dielectric constant $\mathrm{k}_{1}=3$ and thickness $\mathrm{d} / 3$ while the other one has dielectric constant $k_{2}=6$ and thickness $2 \mathrm{~d} / 3$. Capacitance of the capacitor is now:
(A) 20.25 pF
(B) 1.8 pF
(C) 45 pF
(D) 40.5 pF
130. If eight similar charge drops combine to form a bigger drop, then the ratio of capacitance of bigger drop to that of smaller drop will be:
(A) $2: 1$
(B) $8: 1$
(C) $4: 1$
(D) $16: 1$
131. Point charges $q_{1}=2 \mu \mathrm{C} \quad \mathrm{q}_{2}=-1 \mu \mathrm{C}$ are kept at points $x=0$ and $x=6$ respectively. Electric potential will be zero at the points:
(A) $x=1$ and $x=5$
(B) $x=2$ and $x=9$
(C) $x=4$ and $x=12$
(D) $x=-2$ and $x=2$
132. A resistor R is connected across a battery of emf 12 V . It observed that terminal potential difference is 9 V and the power delivered to resistor is 18 W . Internal resistance of the battery 'r' and the resistance R are respectively:
(A) $2 \Omega, 5 \Omega$
(B) $1.8 \Omega, 3.2 \Omega$
(C) $1.6 \Omega, 5.6 \Omega$
(D) $1.5 \Omega, 4.5 \Omega$
133. If the acceleration due to gravity is 10 ms^{-2} and the units of length and time are changed to kilometre and hour, respectively, the numerical value of the acceleration is :
(A) 360000
(B) 72000
(C) 36000
(D) 129600
134. A concave mirror gives an image three times as large as the object placed at a distance of 20 cm from it. For the image to be real, the focal length should be
(A) -10 cm
(B) -15 cm
(C) -20 cm
(D) -30 cm
135. A convex lens of focal length f will form a magnified real image of an object if the object is placed
(A) anywhere beyond $2 f$
(B) anywhere beyond f
(C) between f and $2 f$
(D) between lens and f

SECTION-B

136. The equation of a simple harmonic wave is given by $y=3 \sin \frac{\pi}{2}(50 t-x)$ where x and y are in meters and t is in seconds. The ratio of maximum particle velocity to the wave velocity is
(A) $\frac{3}{2} \pi$
(B) 3π
(C) $\frac{2}{3} \pi$
(D) 2π
137. A vibrating tuning fork of frequency n is placed near the open end of a long cylindrical tube.

The tube has a side opening and is also fitted with a movable reflecting piston. As the piston is moved through 8.75 cm , the intensity of sound changes from a maximum to minimum. If the speed of sound is 350 metre per second, then n is -
(A) 500 Hz
(B) 1000 Hz
(C) 2000 Hz
(D) 4000 Hz
138. If an observer is moving with uniform velocity v to wards a stationary source of frequency n, and if the velocity of sound in the medium is V, then the apparent change in the frequency of the sound, heard by the observer, is -
(A) $\frac{v n}{V-v}$
(B) $\frac{\mathrm{Vn}}{\mathrm{V}}$
(C) $\frac{V n}{V-v}$
(D) $\left(\frac{V+v}{v}\right) n$
139. An ideal gas expanding such that $\mathrm{PT}^{2}=$ constant. the coefficient of volume expansion of the gas is-
(A) $\frac{1}{T}$
(B) $\frac{2}{T}$
(C) $\frac{3}{T}$
(D) $\frac{4}{T}$
140. There is a black spot on a body. If the body is heated and carried in dark room then it glows more. This can be explained on the basis of
(A) Newton's law of colling
(B) Wein's law
(C) Kirchoff's law
(D) Stefan's law
141. An object is cooled from $75^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ in 2 minutes in a room at $30^{\circ} \mathrm{C}$. The time taken to cool another object from $55^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ in the same room in minutes is
(A) 4
(B) 5
(C) 6
(D) 7
142. If specific heat of a substance is infinite, it means-
(A) Heat is given out
(B) Heat is taken in
(C) No change in temperature takes place whether heat is taken in or given out
(D) All of the above
143. A radio transmitter operates at a frequency of 880 kHz and a power of 10 kW. The number of photons emitted per second are
(A) 1.72×10^{31}
(B) 1327×10^{34}
(C) 13.27×10^{34}
(D) 0.075×10^{-34}
144. In the following reaction the value of ' X ' is ${ }_{7} \mathrm{~N}^{14}+{ }_{2} \mathrm{He}^{4} \rightarrow \mathrm{X}+{ }_{1} \mathrm{H}^{1}$
(A) ${ }_{8} \mathrm{~N}^{17}$
(B) ${ }_{8} \mathrm{O}^{17}$
(C) ${ }_{7} \mathrm{O}^{16}$
(D) ${ }_{7} \mathrm{~N}^{16}$
145. The nuclear reaction ${ }^{2} H+{ }^{2} H \rightarrow{ }^{4} \mathrm{He}$ (mass of deuteron $=2.0141 \mathrm{a} . \mathrm{m} . \mathrm{u}$. and mass of $\mathrm{He}=4.0024$ a.m.u.) is
(A) Fusion reaction releasing 24 MeV energy
(B) Fusion reaction absorbing 24 MeV energy
(C) Fission reaction releasing 0.0258 MeV energy
(D) Fission reaction absorbing 0.0258 MeV energy
146. What will be the input of A and B for the Boolean expression $\overline{(A+B)} \cdot \overline{(A \cdot B)}=1$
(A) 0,0
(B) 0,1
(C) 1,0
(D) 1,1
147. In the diagram, the input is across the terminals A and C and the output is across the terminals B and D, then the output is

(A) Zero
(B) Same as input
(C) Full wave rectifier
(D) Half wave rectifier
148. Find colour of rings having resistance $1000 \pm 100 \Omega$
(A) Brown, Black, Black, Silver
(B) Brown, Black, Red, Gold
(C) Brown, Black, Red, Silver
(D) Brown, Black, Black, Gold
149. When an unpolarized light of intensity I_{0} is incident on a polarizing sheet, the intensity of the light which does not get transmitted is
(A) $\frac{1}{2} I_{0}$
(B) $\frac{1}{4} I_{0}$
(C) zero
(D) I_{0}
150. Young's double slit experiment is carried out by using green, red and bluelight, one color at a time. The fringe widths recorded are β_{G}, β_{R} and β_{B} respectively. Then
(A) $\beta_{G}>\beta_{B}>\beta_{R}$
(B) $\beta_{\mathrm{B}}>\beta_{\mathrm{G}}>\beta_{\mathrm{R}}$
(C) $\beta_{R}>\beta_{B}>\beta_{G}$
(D) $\beta_{R}>\beta_{G}>\beta_{B}$

PART - IV [CHEMISTRY]

SECTION_A

151. When Cl_{2} gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from :
(A) zero to +1 and zero to -5
(B) zero to -1 and zero to +5
(C) zero to -1 and zero to +3
(D) zero to +1 and zero to -3
152. Given:
$\mathrm{NH}_{3(g)}+3 \mathrm{Cl}_{2(g)} \rightleftharpoons \mathrm{NCl}_{3(\mathrm{~g})},+3 \mathrm{HCl}_{(g)} ;-\Delta \mathrm{H}_{1}$
$\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3(g)} ;-\Delta \mathrm{H}_{2}$
$\mathrm{H}_{2(g)}+\mathrm{Cl}_{2(g)} \rightleftharpoons 2 \mathrm{HCl}_{(\mathrm{g})} ; \Delta \mathrm{H}_{3}$
The heat of formation of $\mathrm{NCl}_{3(9)}$ in terms of $\Delta H_{1}, \Delta H_{2}$ and ΔH_{3} is :
(A) $\Delta \mathrm{H}_{\mathrm{f}}=-\Delta \mathrm{H}_{1}-\frac{\Delta \mathrm{H}_{2}}{2}-\frac{3}{2} \Delta \mathrm{H}_{3}$
(B) $\Delta \mathrm{H}_{\mathrm{f}}=\Delta \mathrm{H}_{1}+\frac{\Delta \mathrm{H}_{2}}{2}-\frac{3}{2} \Delta \mathrm{H}_{3}$
(C) $\Delta \mathrm{H}_{\mathrm{f}}=\Delta \mathrm{H}_{1}-\frac{\Delta \mathrm{H}_{2}}{2}-\frac{3}{2} \Delta \mathrm{H}_{3}$
(D) None of the above
153. The equilibrium constant for,
$\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})} \quad$ is K , the equilibrium constant for
$1 / 2 \mathrm{~N}_{2(g)}+1 / 2 \mathrm{O}_{2(g)} \rightleftharpoons \mathrm{NO}_{(g)}$ will be :
(A) $1 / 2 \mathrm{~K}$
(B) K
(C) K^{2}
(D) $\mathrm{K}^{1 / 2}$
154. Which of the following salts will give highest pH in water
(A) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(B) CuSO_{4}
(C) KCl
(D) NaCl
155. What is the mole fraction of the solute in a 1.0 m aqueous solution?
(A) 1.770
(B) 0.0354
(C) 0.0177
(D) 0.177
156. During the adsorption of krypton on activated charcoal at low temperature,
\qquad
(A) $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}<0$
(B) $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}<0$
(C) $\Delta H>0$ and $\Delta S>0$
(D) $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}>0$
157. Volume of 0.1 M NaOH needed for the neutralization of 20 mL of 0.05 M oxalic acid is :
(A) 10 mL
(B) 15 mL
(C) 20 mL
(D) 30 mL
158. The number of unit cells in 58.5 g of NaCl is nearly:
(A) 6×10^{20}
(B) 3×10^{22}
(C) 1.5×10^{23}
(D) 0.5×10^{24}
159. At $25^{\circ} \mathrm{C}$, the highest osmotic pressure is exhibited by 0.1 M solution of :
(A) CaCl_{2}
(B) KCl
(C) glucose
(D) urea
160. What volume of $0.2 \mathrm{M} \mathrm{KMnO}_{4}$ is required to react with 1.58 g of hypo solution $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ in acidic medium ?
(A) 20 mL
(B) 10 mL
(C) 16.6 mL
(D) 50 mL
161. The total spin and magnetic moment for the atom with atomic number 24 are :
(A) $\pm 3, \sqrt{24} B M$
(B) $\pm 1, \sqrt{15} \mathrm{BM}$
(C) $\pm 1, \sqrt{35} \mathrm{BM}$
(D) $\pm 3, \sqrt{48} \mathrm{BM}$
162. A gas in open container is heated from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$, the fraction of the original amount of the gas escaped from the container will be :-
(A) $\frac{3}{4}$
(B) $\frac{1}{2}$
(C) $\frac{1}{4}$
(D) $\frac{1}{8}$
163.

$$
\xrightarrow[\Delta]{\mathrm{P}_{4} \mathrm{O}_{10}}(Y) \xrightarrow[\text { (i) } \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}]{\text {(i) DIBAL-H }}(Z)
$$

The compound (Z) is :
(A) $\mathrm{R}-\mathrm{COOH}$
(B) $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{OH}$
(C) $\mathrm{R}-\mathrm{C} \equiv \mathrm{N}$
(D) RCHO

164
$(\mathrm{A}) \xrightarrow{\mathrm{Cl}_{2} h \mathrm{hv}}$
$(B) \xrightarrow{\text { aq. } \mathrm{KOH}}$
(C)
$\xrightarrow{[0]}$
$\mathrm{CH}_{3} \mathrm{CHO}$, Identify $\mathrm{A}, \mathrm{B} \& \mathrm{C}-$
(A) Ethylalcohol, Ethyl chloride \& Ethane
(B) Ethane, Ethylchloride \& Ethyl alcohol
(C) Propane Propylchloride \& Propyl alcohol
(D) None of these
165.

P should be
(A)

(B)

(C)

(D)

166.

(B)

Product A, B \& C are -
(A) Iodoform, Acetylene \& Acetaldehyde
(B) Tri. iodomethane, Ethyne \& Acetone
(C) Iodoform, Ethene \& Ethylene glycol
(D) Ethene, iodoform \& Ethylhydrogen sulphate
sulphate
167. The correct stability order for the following species is :

(I)

(III)

(II)

(IV)
(A) (II) $>$ (IV) $>$ (I) $>$ (III)
(B) (I) $>$ (II) $>$ (III) $>$ (IV)
(C) (II) $>$ (I) $>$ (IV) $>$ (III)
(D) (I) $>$ (III) $>$ (II) $>$ (IV)
168. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl} \xrightarrow[\mathrm{H}_{2}]{\mathrm{Pd}_{2} \mathrm{BaSO}_{4}}$ Intermediate $\xrightarrow{\text { oxdation }}$ Intermediate $\xrightarrow[\text { DryDistillation }]{\text { Clarion }} A$ Compound (A) in above reaction sequence is-
(A) Benzophenone
(B) Benzaldehyde
(C) Acetophenone
(D) Benzoquinone
169.

(A)

(B)

(C)

(D)

170. The major product of the following reaction is :

(A)

(B)

(C)

(D)

OH

促
A)

171. Arrange the followings in increasing order of boiling point.
Propan-1-ol, butan-1-ol, butan-2-ol, pentan-1-ol
(A) Propan-1-ol, butan-2-ol, butan-1-ol, pentan-1-ol
(B) Propan-1-ol, butan-1-ol, butan-2-ol, pentan-1-ol
(C) Propan-1-ol, butan-2-ol, butan-1-ol, pentan-1-ol
(D) Propan-1-ol, butan-1-ol, butan-2-ol, pentan-1-ol

172

The product B is :
(A) $\mathrm{PhCH}=\mathrm{CHCH}_{2} \mathrm{Br}$
(B)

(C) $\mathrm{PhCH}_{2} \mathrm{CH}(\mathrm{Br}) \mathrm{COOH}$
(D) $\mathrm{PhCH}=\mathrm{CH}-\mathrm{COBr}$
173. $\mathrm{CH}_{3} \mathrm{CN} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \xrightarrow{\mathrm{LiAlH}_{4}} \xrightarrow{\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{MgBr}} A$ Compound ' A ' is :
(A)

(B)

(C)

(D)

174. Which of the following is halogen exchange reaction ?
(A) $\mathrm{RX}+\mathrm{NaI} \rightarrow \mathrm{RI}+\mathrm{NaX}$
(B)

(C) $\mathrm{R}-\mathrm{OH}+\mathrm{HX} \xrightarrow{\mathrm{ZnCl}_{2}} \mathrm{R}-\mathrm{X}+\mathrm{H}_{2} \mathrm{O}$
(D)

175. Which of following has two π-bonds ?
(A) B_{2}
(B) O_{2}
(C) C_{2}
(D) None
176. The isoelectronic set of ions is:
(A) $\mathrm{F}^{-}, \mathrm{Li}^{+}, \mathrm{Na}^{+}$and Mg^{2+}
(B) $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{O}^{2-}$ and F^{-}
(C) $\mathrm{N}^{3-}, \mathrm{Li}^{+}, \mathrm{Mg}^{2+}$ and O^{2-}
(D) $\mathrm{N}^{3-}, \mathrm{O}^{2-}, \mathrm{F}^{-}$and Na^{+}
177. Match the refining methods (Column I) With metals (Column II).

Column I (Refining methods)
 Column II (Metals)

(I) Liquation
(II) Zone Refining
(a) Zr
(III) Mond process
(b) Ni
(IV) Van Arkel Method
(c) Sn
(A) (I)-(b); (II)-(d); (III)-(a); (IV)-(c)
(B) (I)-(c); (II)-(d); (III)-(b); (IV)-(a)
(C) (I)-(b); (II)-(c); (III)-(d); (IV)-(a)
(D) (I)-(c); (II)-(a); (III)-(b); (IV)-(d)
178. The Graph between $|\Psi|^{2}$ and r (radial distance) is shown below. This represents :

(A) 2 p orbital
(B) 2 s orbital
(C) 3 s orbital
(D) 1 s orbital
179. The alloy used in the construction of aircrafts is :
(A) $\mathrm{Mg}-\mathrm{Zn}$
(B) $\mathrm{Mg}-\mathrm{Al}$
(C) $\mathrm{Mg}-\mathrm{Mn}$
(D) $\mathrm{Mg}-\mathrm{Sn}$
180. Consider the hydrated ions of $\mathrm{Ti}^{2+}, \mathrm{V}^{2+}$, Ti^{3+} and Sc^{3+}. The correct order of their spin-only magnetic moments is:
(A) $\mathrm{Sc}^{3+}<\mathrm{Ti}^{3+}<\mathrm{V}^{2+}<\mathrm{Ti}^{2+}$
(B) $\mathrm{Ti}^{3+}<\mathrm{Ti}^{2+}<\mathrm{Sc}^{3+}<\mathrm{V}^{2+}$
(C) $\mathrm{V}^{2+}<\mathrm{Ti}^{2+}<\mathrm{Ti}^{3+}<\mathrm{Sc}^{3+}$
(D) $\mathrm{Sc}^{3+}<\mathrm{Ti}^{3+}<\mathrm{Ti}^{2+}<\mathrm{V}^{2+}$
181. The species that can have a transisomer is :
(en $=$ ethane-1,2-diamine, ox = oxalate)
(A) $\left[\mathrm{Zn}(\mathrm{en}) \mathrm{Cl}_{2}\right]$
(B) $\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+}$
(C) $\left[\mathrm{Pt}(\mathrm{en}) \mathrm{Cl}_{2}\right]$
(D) $\left[\mathrm{Cr}(\mathrm{en})_{2}(\mathrm{ox})\right]^{+}$
182. The correct statements among (a) to
(d) are :
(a) Saline hydrides produce H_{2} gas when reacted with $\mathrm{H}_{2} \mathrm{O}$
(b) reaction of LiAlH_{4} with BF_{3} leads to $\mathrm{B}_{2} \mathrm{H}_{6}$
(c) PH_{3} and CH_{4} are electron - rich and electron - precise hydrides, respectively.
(d) HF and CH_{4} are called as molecular hydrides.
(A) (a), (c) and (d) only
(B) (a), (b), (c) and (d)
(C) (c) and (d) only
(D) (a), (b) and (c) only
183. The noble gas that does NOT occur in the atmosphere is :
(A) Kr
(B) Ra
(C) He
(D) Ne
184. The correct order of the first ionization enthalpies is:
(A) $\mathrm{Mn}<\mathrm{Ti}<\mathrm{Zn}<\mathrm{Ni}$
(B) $\mathrm{Ti}<\mathrm{Mn}<\mathrm{Ni}<\mathrm{Zn}$
(C) $\mathrm{Ti}<\mathrm{Mn}<\mathrm{Zn}<\mathrm{Ni}$
(D) $\mathrm{Zn}<\mathrm{Ni}<\mathrm{Mn}<\mathrm{Ti}$
185. A hydrated solid X on heating initially gives a monohydrated compound Y . Y upon heating above 373 K leads to an anhydrous white powder $Z . X$ and Z, respectively, are:
(A) Baking soda and soda ash
(B) Baking soda and dead burnt plaster
(C) Washing soda and dead burnt plaster
(D) Washing soda and soda ash

SECTION_B

186. The γ-form of iron has fcc structure (edge length 386 pm) and β-form has bcc structure (edge length 290 pm). The ratio of density in γ-form and β form is -
(A) 0.84
(B) 1.02
(C) 1.57
(D) 0.6344
187. Which condition is not satisfied by ideal solution ?
(A) $\Delta_{\text {mix }} V=0$
(B) $\Delta_{\text {mix }} S=0$
(C) Obeyance to raoult's law
(D) $\Delta_{\text {mix }} \mathrm{H}=0$
188. What volume of $0.1 \mathrm{~N} \mathrm{FeSO}_{4}$ can be Reduced by a current of 2 ampere for 1 hours ?
(A) 0.746 L
(B) 7.46 L
(C) 1.482 L
(D) 0.373 L
189. A person requires 2870 kcal of energy to lead normal daily life. If heat of combustion of cane sugar is -1349 kcal , then his daily consumption of sugar is :
(A) 728 g
(B) 0.728 g
(C) 342 g
(D) 0.342 g
190. For an elementary chemical reaction, $A \longrightarrow B$, the rate of reaction doubles when the concentration of A is increased four times. The order for this reaction is with respect to A is:
(A) 2
(B) 1
(C) $1 / 2$
(D) Zero
191. Decreasing -I effect of given groups is :
(i) -CN
(ii) $-\mathrm{NO}_{2}$
(iii) $-\mathrm{NH}_{2}$
(iv) -F
(A) iii $>$ ii $>$ i $>$ iv
(B) ii $>$ iii $>$ iv $>$ i
(C) iii $>$ ii $>$ iv $>$ i
(D) ii $>$ i $>$ iv $>$ iii
192. Number of structurally isomeric ethers with molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$.
(A) 4
(B) 5
(C) 6
(D) 7
193. Tautomerism is not shown by :
(A)

(B)

(C)

(D)

194. The two functional groups present in monosaccharides are :
(A) -OH and - CHO
(B) -OH and -COOH
(C) -CHO and -COOH
(D)

195. Which of the following is not a broad spectrum antibiotic ?
(A) Tetracycline
(B) Chloromycetin
(C) Penicillin
(D) None of these
196. The basic structural unit of feldspar, zeolites, mica, and asbestos is :
(A) SiO_{2}
(B) $\begin{gathered}\mathrm{R} \\ 1 \\ +\mathrm{Si}-\mathrm{O})_{n} \\ 1 \\ \mathrm{R}\end{gathered} \quad(\mathrm{R}=\mathrm{Me})$
(C) $\left(\mathrm{SiO}_{4}\right)^{4-}$
(D) $\left(\mathrm{SiO}_{3}\right)^{2-}$
197. Complete removal of both the axial ligands (along the z-axis) from an octahedral complex leads to which of the following splitting patterns ? (relative orbital energies not on scale).
(A)

(B)

(C)

(D)

198. The metal that gives hydrogen gas upon treatment with both acid as well as base is:
(A) magnesium
(B) zinc
(C) iron
(D) mercury
199. An organic compound ' A ' is oxidized with $\mathrm{Na}_{2} \mathrm{O}_{2}$ followed by boiling with HNO_{3}. The resultant solution is then treated with ammonium molybdate to yield a yellow precipitate.
Based on above observation, the element present in the given compound is:
(A) Fluorine
(B) Phosphorus
(C) Sulphur
(D) Nitrogen
200. The correct sequence of thermal stability of the following carbonates is:
(A) $\mathrm{MgCO}_{3}<\mathrm{SrCO}_{3}<\mathrm{CaCO}_{3}<\mathrm{BaCO}_{3}$
(B) $\mathrm{BaCO}_{3}<\mathrm{SrCO}_{3}<\mathrm{CaCO}_{3}<\mathrm{MgCO}_{3}$
(C) $\mathrm{MgCO}_{3}<\mathrm{CaCO}_{3}<\mathrm{SrCO}_{3}<\mathrm{BaCO}_{3}$
(D) $\mathrm{BaCO}_{3}<\mathrm{CaCO}_{3}<\mathrm{SrCO}_{3}<\mathrm{MgCO}_{3}$
